If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2j^2-7j+4=0
a = 2; b = -7; c = +4;
Δ = b2-4ac
Δ = -72-4·2·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{17}}{2*2}=\frac{7-\sqrt{17}}{4} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{17}}{2*2}=\frac{7+\sqrt{17}}{4} $
| -5t^2+10t+2.5=0 | | 20d-5d+3d-8d-2d+2d=18 | | 20d-5d+3d-8d-2d=2d=18 | | b12+5=7 | | 19h-h-10h-5=19 | | 28x=23 | | 6c-5c=13 | | 6c−5c=13 | | 7c+2c-3c+3c=18 | | 7c+2c−3c+3c=18 | | X+1.1x=100 | | g=3(12+8) | | 35x/2+2835x=0 | | 20u−12u=8 | | 32x^2/3=16 | | 2(32/7)+6+2y+7=180 | | 8×y=24 | | 35x^2+2835=0. | | 5=|+4b | | 35x^2+2835x=0. | | 5x+20≤50= | | 5x+20≤50= | | 4g-8(2g+2)=-4g+8 | | 4g-8(2g+2)=-4g+8 | | 4g-8(2g+2)=-4g+8 | | 3(2x4)=3x+24 | | (x-2)(x^2-4x+4)=27 | | 2x-8/2=-2 | | 15y=59 | | (3+x)/(4)=(2)/(7) | | x-8/3=9 | | -13-5n=n-6-5n |